永磁同步电机FOC控制的基础原理及MatlabSimulink仿真分析
来源:变频驱动永磁同步电动机    发布时间:2023-12-10 22:16:50

  做永磁同步电机控制绕不开FOC,本章节主要介绍FOC控制的基础原理、坐标变换以及永磁同步电机在同步旋转坐标系下的数学模型,并通过Matlab/Simulink进行永磁同步电机FOC控制算法的仿真分析。

  磁场定向控制(Field-Oriented Control,FOC)系统的基本思想是:通过坐标变换,在按转子磁场定向同步旋转坐标系中,得到等效的直流电动机模型,仿照直流电动机的操控方法控制电磁转矩与磁链,然后将转子磁链定向坐标系中的控制量反变换得到三相坐标系的对应量,以实施控制,具体流程如下图所示:

  FOC最重要的原则是:按转子磁场定向,即保持转子磁链旋转矢量始终与dq坐标系下的d轴重合,q轴正交。 通过按转子磁场定向,将定子电流解耦为了励磁分量 id和转矩分量 iq。 通过电流 id实现对转子磁链的控制,电流 iq实现对电磁转矩的控制,类比于直流电机的控制。 对于表贴式永磁同步电机SPM,一般设置励磁分量id =0,定子电流全部用于产生电磁转矩。

  FOC最主要的任务就是:通过不停的观测转子角度,实现转子磁链定向,即保持转子磁链旋转矢量始终与dq坐标系下的d轴重合,q轴正交,dq坐标轴同转子磁链同步旋转。

  采用等幅值变换,通过下式将三相静止坐标系ABC下的电流转换为两相静止坐标系αβ下的电流:

  由于ia+ib+ic=0 ,因此实际中只需要三相静止坐标系下的两相电流即可,通过下式进行变换:

  将两相静止坐标系αβ下的电流转换为同步旋转坐标系dq下的电流,由下式所示:

  将三相自然坐标系下的PMSM数学模型,通过坐标变换,转换为同步旋转坐标系下的数学模型。 同步旋转坐标系的d轴与转子磁链对齐,并保持同步旋转,如下所示:

  由上式,通过坐标变换将三相自然坐标系下的PMSM数学模型变换为同步旋转坐标系下的数学模型,使PMSM的数学模型实现了解耦,可仿照直流电机的操控方法对PMSM进行控制。

  四、永磁同步电机磁场定向控制Matlab/Simulink仿线.电压开环控制

  如上图所示,直接给定同步旋转坐标系下的Vd,Vq电压实现永磁同步电机磁场定向的电压开环控制。 Matlab/Simulink整体仿线.仿真电路分析

  直接给定同步旋转坐标系下Vd,Vq的电压值实现永磁同步电机磁场定向的电压开环控制。

  此处作了一个归一化处理,将FOC电压开环控制的输出电压(调制波形 马鞍波)范围设置在[0,1]之间。

  主电路包括逆变电路与永磁同步电机,逆变电路如下图所示,采用Average-Value Inverter模块直接生成三相正弦电压。 永磁同步电机采用BR2804-1700电机(电机的参数用ST Motor Proflier测得),参数如下:

  设置开环输入电压Vd、Vq为0和1,该电压经过反Park变换及SVPWM算法输出的马鞍波形如下:

  在电压开环控制中,加入负载后dq坐标系下的定子电流Id不等于0约为0.036,说明定子电流未完全用于产生电磁转矩。 引入电流闭环控制,精确的控制电机Id、Iq电流值。 电流环的最大的作用是在电机启动过程中能够以最大的电流启动,同时对电网电压的波动起及时抗扰的作用,加快动态系统的响应速度,提高系统的稳定性,其控制框图如上图所示。

  永磁同步电机电流闭环控制的Matlab/Simulink整体仿线.仿真电路分析

  与电压开环控制的不同点就是将定子电流进行了反馈,设定同步旋转坐标下定子电流为Id_Ref、Iq_Ref,设定值与定子电流的反馈值Id、Iq进行PI控制,PI控制器的输出作为永磁同步电机的电压给定,驱动PMSM。

  设置电流参考值Id_Ref、Iq_Ref为0和1,电流参考值与Id和Iq电流反馈值的误差经PI调节器输出电压Vd、Vq用于电机控制。

  dq坐标系下的定子电流值:电机启动时以设定的最大电流1A进行启动,当转速达到稳态值时电流立即降了下来,实现了理想最优的启动过渡过程。

  在实际控制中我们一般关心转速的变化,期望电机以设定的转速进行变化,这时仅靠电流闭环不太能实现,加入转速闭环,实现对转速的控制。 转速控制器的输出为电流控制器的给定,转速控制器的输出要进行限幅,因为转速控制器的输出限幅值决定了所用电机的最大允许电流。

  永磁同步电机转速外环电流内环双闭环控制的Matlab/Simulink整体仿线.仿真电路分析

  在电流闭环控制的基础上引入了转速闭环控制,转速控制器的输出作Iq电流的输入,构成转速外环电流内环双闭环控制系统。

  至此永磁同步电机FOC的基础原理及Matlab/Simulink的仿真部分就说完了。 永磁同步电机的电压开环控制、电流闭环控制、转速外环电流内环双闭环控制与直流电机的控制思想一致,永磁同步电机通过坐标变换,转换到按转子磁场定向的同步旋转坐标系中,就为了实现PMSM数学模型的解耦,将PMSM等效为一个他励“直流电机”,按直流电机的控制思想进行PMSM的控制。 有关PID控制器的参数整定、SVPWM控制算法以及永磁同步电机磁场定向矢量控制的工程实现会在后续进行补充。

  本章节介绍了FOC控制的基础原理,坐标变换以及永磁同步电机在同步旋转坐标系下的数学模型,并通过Matlab/Simulink进行了永磁同步电机FOC控制算法的仿真分析,包括电压开环控制、电流闭环控制、转速外环电流内环双闭环控制,为后续章节的分析奠定基础。

  编辑:什么鱼 引用地址:永磁同步电机FOC控制的基础原理及Matlab/Simulink仿真分析上一篇:永磁同步电机磁场定向控制转速环PI调节器的参数整定下一篇:永磁同步电机恒压频比开环控制管理系统Matlab/Simulink仿真分析(二)

  自20世纪60年代末以来,面向磁场的矢量控制一直是交流电机控制的主流。这样的操控方法的主要特征是对电机气隙磁场和转矩进行分开控制。对于永磁同步电机,典型的控制设计就是考虑恒定的磁通会产生一个转矩常数kt,该常数在大多数电机的技术手册中都能找到。获得需要的转矩m所对应的电流iq也由此计算得到。但是,输出转矩和相应的电流iq之间的这种恒定关系的可信度很容易受到各种各样的实际因素的负面影响,这样的影响很容易产生转矩控制中所不能接受的精度偏差。一些易影响的实际因素如下: ●产品出厂过程与材料的老化; ●铁心材料在过载时饱和; ●磁阻转矩变化; ●电枢(磁性材料)的温度。 磁材料(磁介质)的分散性导致的实际转矩常数与数据手册上的数值偏差可

  今日宣布,推出Robocs System Toolbox (机器人系统箱),这个新产品是Release 2015a的组成部分。通过即用型算法和用于开发自动移动机器人应用程序的硬件连接性,RoboTIcs System Toolbox提供了常用的机器人算法,以及和Simulink与机器人操作系统 (ROS) 之间的和集成。现在,机器人研究人员和工程师们可以在单个统一的设计环境中开发机器人算法,在支持ROS 的机器人和机器人(如 Gazebo 和 V-REP)上测试和部署机器人算法。它通过减少从 MATLAB程序转换到 ROS程序所需的手动修改时间,留出了更多的时间来测试和调试算法。 RoboTIcs System Too

  0 引 言 TMS320LF2407是TI公司开发的、适用于电机控制的数字信号处理器(DSP),在原有DSP内核的基础上添加了脉宽调制(PWM)、A/D、D/A模块,以此来实现对电机系统的全数字控制。它在电机控制管理系统中得到了广泛应用,并取得了显著效果。在开发一套以DSP为核心的永磁同步电机控制管理系统时,需要及时观察驱动系统中的各个变量,并且要对一些程序来控制,修改特定参数。DSP在实际运行中不能用外接的端口来控制,需要用DSP自带的串行通信模块来解决这一问题。通过一台上位计算机和以DSP为核心的电机控制管理系统构成整个监控系统,Pc机通过串口来改变DSP程序中转矩、磁链给定,以及调节PI参数等,电机控制管理系统完成对电机的控制,

  永磁同步电机的工作原理与传统同步电机基本相同,其结构也由定子和转子两部分所组成。其中定子由电磁绕组和磁极构成,通过三相交流电源供电,产生旋转磁场。转子则由永磁体组成,通过物理运动实现旋转。 当三相交流电源向定子电磁绕组中输入电流时,根据三相交流电源的正弦规律,电流的大小和方向会一直在变化,由此产生旋转磁场。这个旋转磁场的转速由电源频率和定子绕组的极对数决定,正常的情况下是同步转速。 当转子中的永磁体与旋转磁场同步旋转时,它们之间就会产生相对运动,从而在永磁体表面产生交变电动势。根据电机的运动定律,当转子内部存在电动势时,会产生电流,这个电流产生的方向与旋转磁场的方向相同,这个电流称为转子电流。 转子电流与定子

  摘要:介绍了VB与MATLAB混合编程的方法,二者结合可以充分的利用VB的方便快捷和MATLAB软件工具箱的强大功能。 关键词: VB VC++ MATLAB DLL 编译 MATLAB Add-in MATLAB是MathWorks公司开发的科学计算环境,具有强大的计算绘图能力,提供大量的函数库、工具箱,几乎涵盖了所有的工程计算领域,被誉为“演算纸”式的工程计算工具。但是MATLAB语言是一种解释执行的脚本语言,运算速度较慢是一个比较突出的问题。 Visual Basic作为一门易学易用的编程语言,受到很多工程技术人员的青睐,其执行速度相对较快,界面友好。因此实现VB与MATLAB混合编程,可以为科研工作和工程应用提供有力的

  新型EPS电源工作过程及仿线 传统EPS应急电源     工程供电设计中对于一、二类重要负荷需要仔细考虑供电连续性的措施。除了双电源,双回路供电外,还需配有应急电源。应急电源是与电网在电气上独立的各种电源,包括柴油发电机组和蓄电池,其中蓄电池又分为。EPS(Emergen-cy Power Supply)和UPS(Uninterruptable Power System)。     EPS应急电源是以CPU为核心,加上整流充电模块、逆变放电模块、旁路切换模块和蓄电池组成的智能供电模块,采用电子集成模块化结构的强弱电一体化系统,是一种高科技环保产品。他在紧急的情况下作为重要负荷的第二或第三电源供给,可望替代不少场合的柴油发电机组和UPS。采用智能芯片控制

  0 引 言 TMS320LF2407是TI公司开发的、适用于电机控制的数字信号处理器(DSP),在原有DSP内核的基础上添加了脉宽调制(PWM)、A/D、D/A模块,以此来实现对电机系统的全数字控制。它在电机控制管理系统中得到了广泛应用,并取得了显著效果。在开发一套以DSP为核心的永磁同步电机控制管理系统时,需要及时观察驱动系统中的各个变量,并且要对一些程序来控制,修改特定参数。DSP在实际运行中不能用外接的端口来控制,需要用DSP自带的串行通信模块来解决这一问题。通过一台上位计算机和以DSP为核心的电机控制管理系统构成整个监控系统,Pc机通过串口来改变DSP程序中转矩、磁链给定,以及调节PI参数等,电机控制管理系统完成对电机的控制,并采

  摘要:针对目前 DSP 的算法开发主要依赖手工编写C代码,不但工作量大,而且程序的下载依赖于专门的昂贵的仿真器的问题,在此提出了基于Matlab/ Simulink 环境的DSP算法开发,并利用 串口 通信实现程序下裁的综合方案。该方案能很好地利用Matlab现有的功能模块,大幅度的降低了DSP的算法开发难度,利用 RTW 技术,可将算法自动生成C代码。利用串口通信下载调试程序,方便有效,节约了系统开发的成本。经实验验证,利用该方案缩短了算法开发的周期,结果可靠,成本低。 关键词:DSP;串口; RTW;Simulink 0 引言 数字信号处理器(Digital Signal Processing,D

  设计和部署面向服务的架构

  仿真 (刘金琨)

  ADI世健工业嘉年华—有奖直播:ADI赋能工业4.0—助力PLC/DCS技术创新

  MPS 隔离式稳压 DC/DC 模块——MIE系列首发,邀你一探究竟!

  ETAS和英飞凌基于AURIX微控制器实现的ESCRYPT CycurHSM获得NIST CAVP认证

  【2023年12月5日,德国慕尼黑和斯图加特讯】领先的软件定义汽车(SDV)解决方案提供商ETAS 与英飞凌科技股份公司的加密算法套件成功通过认 ...

  贸泽开售LoadSlammer LSP-Kit-OracADJ-X套件

  帮助工程师为AMD Xilinx FPGA设计安全高效的电源2023年12月4日 – 专注于推动行业创新的知名新品引入 (NPI) 代理商™贸泽电子 (Mouse ...

  贸泽电子开售适用于远距离边缘应用的Silicon Labs xG28系列SoC

  2023年12月1日 – 专注于引入新品的全球电子元器件和工业自动化产品授权代理商贸泽电子 (Mouser Electronics) 即日起供货Silicon Lab ...

  恩智浦发布新一代智能语音技术组合的语音识别引擎。在这篇博文中,我们将探讨开发人员在嵌入式语音控制设计中面临的挑战、我们新的Speech ...

  全新RISC-V内核扩展了瑞萨卓越的嵌入式处理产品阵容2023 年 11 月 30 日,中国北京讯 - 全球半导体解决方案供应商瑞萨电子今日宣布 ...

  英飞凌推出全新 PSoC Edge产品系列,为边缘应用带来高性能、高能效的机器学习技术

  BOE(京东方)独供一加十年超越之作一加12 全面定义国产柔性OLED屏幕新高度

  英飞凌参加TRUSTECH 2023:在迷你机场展区演示高性能证照身份识别和支付交易

  Microchip最新SAM 以及 PIC32单片机软件开发平台-- MPLAB Harmony V3介绍 ”

  现场抽取PS5等诸多好礼 SiFive RISC-V 中国技术论坛 上海、北京、深圳 3场线下活动邀您出席!

  有奖直播:新科技、新课堂、新学期~ ADI软件定义无线电ADALM-Pluto入门实战

  免费送:英国Aim TTi 最新数字信号发生器和热销电流探头【社区重磅福利】

  总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科词云: